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Abstract

Biomarker signature discovery remains the main path to developing clinical diagnostic tools when the biological knowledge on
pathology is weak. Shortest signatures are often preferred to reduce the cost of the diagnostic. The ability to find the best and shortest
signature relies on the robustness of the models that can be built on such a set of molecules. The classification algorithm that will be
used is often selected based on the average Area Under the Curve (AUC) performance of its models. However, it is not guaranteed that
an algorithm with a large AUC distribution will keep a stable performance when facing data. Here, we propose two AUC-derived hyper-
stability scores, the Hyper-stability Resampling Sensitive (HRS) and the Hyper-stability Signature Sensitive (HSS), as complementary
metrics to the average AUC that should bring confidence in the choice for the best classification algorithm. To emphasize the importance
of these scores, we compared 15 different Random Forest implementations. Our findings show that the Random Forest implementation
should be chosen according to the data at hand and the classification question being evaluated. No Random Forest implementation
can be used universally for any classification and on any dataset. Each of them should be tested for their average AUC performance
and AUC-derived stability, prior to analysis.
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Introduction

In the field of cancer care, biomarker screening helps clinicians in
their decision-making. Biomarker Signature Discovery (BSD) aims
to identify a set of hundreds of variables, out of thousands, that
will capture the molecular differences between the categories
of patients to study. Short BSD focuses on the most relevant
variables to build the shortest predictive signature for comfort-
able use in daily clinical routine. While the clinicians expect a
manageable test with few variables, they also expect it to be
robust enough to reduce the prediction error.

Short combinations of biomarkers, also called short signatures,
can be easily transferred to daily clinical routines. These short
signatures can be used at a low cost to diagnose cancer sub-
types, predict treatment responses, or monitor patients during
treatment [1, 2]. However, with >10 000 clinical trials, based on
biomarkers and cancer, currently ongoing [3], only a few studies
may be successfully transferred to the clinics, and fewer may
impact the diagnosis practices as only a few biomarkers are
clinically relevant yet [4]. Indeed, within the past clinical trials on
Breast Cancer, only the Oncotype DX, MammaPrint, EndoPredict,
Breast Cancer Index (BCI), and Prosigna (PAMS50) multianalyte
tests have been successfully transferred with their associated
model of prediction [5]. Despite these few commercial successes,
many publications are directly related to biomarkers [4], and the
design of short, robust, and universal signatures of biomarkers
predictive of a clinical state remains challenging. Combinatory
strategies are increasingly used to determine multivariate signa-
tures [1, 6]. Machine Learning (ML) has gained popularity in this
sense to create associated models and assess the robustness of
those signatures [6, 7]. Researchers often compare ML strategies

upstream to determine the “best” approach to use and usually rely
on the highest average AUC performance. However, such average
AUCs are highly variable. Indeed, based on Gonzalez-Bosquet
et al’s observation, nine ML methods, including RF, exhibited
AUCs ranging from 0.53 to 0.73 [8]. Due to this variation, the
average AUC is not an optimal criterion for assessing the best ML
methodology.

Random Forest (RF) is among the most popular machine learn-
ing methods in bioinformatics and related fields. RF is an ensem-
ble of classification or regression trees that was introduced by
Breiman [9]. It is extensively applied to gene expression data
because it copes with ‘large p small n’ problems, it exhibits
relatively good accuracy, is robust to noise, and requires little
parameter tuning. Moreover, RF is easy to use and the interpreta-
tion of the resulting models is facilitated since it is all about a suite
of ‘if .. else’ -like decision rules. Since the original RF algorithm
proposed by Breiman [9], several variations to RFs have been made
available via the R Project for Statistical Computing, including
orthogonal and oblique methods.

The current study aimed at assessing RF strategies based on
both the average AUC and stability of the resulting AUC. Therefore,
the question asked was how can AUC stability help in deciding the
best predictive RF implementation? We put this question in the
context of a short BSD identification and evaluation. In the BSD
field, several applications of RFs exist [6, 8]. In this study, we focus
on assessing the most stable RF method, from 15 implementations
in R (Table 1). Our study was driven by tumor versus healthy in
paired samples from The Cancer Genome Atlas (TCGA) database
(RNAseq of Breast Cancer (BRCA), Lung Squamous cell Carcinoma
(LUSC), and Thyroid Cancer (THCA) cancers).
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Table 1. Summary of RF methods implemented in R language and used in this study.

Implementation Algorithm 0OB R package

RandomForest Orthogonal v randomForest v4.6-12 [10]
RFSRC Orthogonal v randomForestSRC v2.6.1 [11]
Ranger Orthogonal v ranger v0.10.1 [12]

cForest Orthogonal v partykit v1.1.1 [13]

Rborist Orthogonal v Rborist v0.1-8 [14]
ExtraTrees Orthogonal extraTrees v1.0.5 [15]

RUF Orthogonal v randomUniformForest v1.1.5 [16]
RRF Orthogonal v RRF v1.7 [17]

WSRF Orthogonal v wsrf v1.7.17 [18]

iForest Orthogonal iRF v.2.0.0 [19]

CCF Oblique ccf v1.0.0 [20]

PPForest Oblique v PPforest v0.1.1 [21]
ObliqueRF Oblique v obliqueRF v0.3 [22]
RotationForest Oblique rotationForest v0.1.3 [23]
Rerf Oblique v rerf v1.0 [24]

OOB, out-of-bag; RFSRC, RandomForestSRC; RUF, RandomUniformForest; RRF, Regularized Random Forest; WSRF, Weighted Subspace Random Forest; CCF,
Canonical Correlation Forest; PPForest, Pursuit Projection Random Forest; Rerf, Randomer Forest.

The conclusions are two-fold. First, AUC-derived stability
reveals the dataset dependency of an RF implementation. Second,
based on two distinct scores, hyper-stability can highlight whether
an RF implementation is signature or resampling dependent.
Consequently, AUC stability provides a confidence score on top of
the commonly used average AUC for the selection of the best RF
implementation. Additionally, the modelization time can further
help discriminating between RF implementations with equal
stability performance.

Materials and methods

The description of the symbols used in the following formulas is
given in Table S1 in the supplementary data File S1.

The Cancer Genome Atlas sample collection,
normalization, and filtering

TCGA database was screened to maximize the number of paired
tumor-healthy samples in cancer cohorts. TCGA clinical data
were filtered to select cancers with the most similar histological
subtypes and patients with paired healthy tumor samples. Sub-
sequently, three TCGA datasets were used in this study: BRCA,
LUSC, and THCA. These three datasets were downloaded using
the TCGA2STAT R-package [25]. Paired healthy tumor samples
were collected with Reads Per Kilobase per Million mapped reads
(RPKM) normalization using the tumorNormalMatch function from
the same R-package. The total number of primary variables was
reduced based on their variance to Ny variables before the feature
selection step, using the Log Intensity variation function of the
BRB-ArrayTools software (version 3.8.1) with the P-value parame-
ter set to .001. The description of the three datasets selected was
detailed in Table 2.

Workflow of the comparative study

A graphical summary of our study comparing multiple RF imple-
mentations via hyper-stability assessment is given in (Fig. 1). Next,
we explain each step in greater detail. We use the term ‘resam-
pling rate’ to refer to the percentage of data that goes to the
training partition after a balanced random sampling without a
replacement from the original data.

U

e

Dataset: M samples x Ny variables

-«

Step 1: Feature selection
- Calculate variable importance rank
- Calculate stability indices (Kuncheva and Spearman)
- Select N'y variables accordingly

'

Step 2: Data and model preparation
- Samples: random generation of k=50 resampling
- Variables: random selection of S signatures
- Model hyperparameter: finetune the parameter ntree

)

Step 3: RF modelization and AUCs
- Compute q=25 RF models and AUCs per signature and
resampling
- Calculate average AUC and runtime

)

Step 4: Hyper-stability of AUCs
- Coefficients of variation CVs
- Hyper-stability scores: Resampling dependent HRS
- Hyper-stability scores: Signature dependent HSS

Figure 1. Overall procedure of AUC-based hyper-stability benchmarking
of RF implementations.

Step 1: Feature selection

The Feature Selection (FS) procedure used in this study followed
the rank-based overlap and correlation principles inspired by
Alelyani et al. [26]. FS was used to determine the minimum num-
ber of variables to be retained for downstream analysis. Rank-
based variable importance was used and calculated based on
a combination of the Mean Decrease in GINI (MDG) and Mean
Decrease in Accuracy (MDA) of the RF algorithm. The threshold
used for the selection of was determined using stability indices
Kuncheva and Spearman. The entire methodology concerning FS
is provided in the supplementary file (File S1).
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Table 2. Description of TCGA datasets used in this study. The result summary of Step 1 and Step 2 on each dataset is also reported.

Dataset TCGA-BRCA

TCGA-LUSC TCGA-THCA

Dataset description

Histological subtype Infiltrating ductal carcinoma Lung squamous cell carcinoma  Thyroid papillary carcinoma
Patients 91 48 49
Samples 182 96 98
Number of variables Ny 9500 9262 9353
Result of Step 1 and Step 2 of the pipeline

Number of variables after FS Ny, 28 9 38
Number of trees after OOBerr N¢ 500 500 500
Selected signatures 78 21 108
Overall variable correlation 0.61 0.83 0.64
Highly correlated variables within signature (%) 0.02 0.96 0.03
Variable-to-sample ratio 0.3 0.2 0.8

Step 2: Data and model preparation

o Fine-tune the RF parameter ntree: For all RF methods that imple-
ment the out-of-bag principle (Table 1), the out-of-bag error
(OOBerr) was computed based on variables as a function
of ntree € {10, 20, .., 1200}. Similarly, a total of k =50 bal-
anced random case/control partitions were generated using
a resampling rate of P=.9, and q =25 intrinsic RF models per
partition. Subsequently, 50 x 25=1250 RF models and 1250
OOBerr values were obtained for each value of ntree. The
OOBerr was averaged over the ntree value and plotted as a
function of ntree for each RF method. The minimal number of
trees Nt = 500 was obtained when the OOBerr was optimized
and stabilized for the tested implementations. This value of
is sufficiently acceptable from all the RF implementations
including those not implementing the out-of-bag principle.

e Obtain potential signatures of max length Nu’: The total number
of possible signatures Ngwas defined by Equation (1). These
signatures contained a different number of variables, from
size 1 to size. A random selection of three signatures from
size 2 to size was made. A total of S signatures were therefore
selected (see Table S2 in the supplementary data File S2) for
the comparison using Equation (2).

Ng=2Nv -1 (1)

S=3Ny -2 )

e Define learning and validation sets: A total of k =50 random
training partitions were generated from the original dataset,
using a resampling rate P =0.5 for downstream analysis. The
function createDataPartition from the R-cran package caret [27]
was used to create these partitions.

The detailed result of Step 1 and Step 2 on the three datasets is
described in Table 2.

Step 3: RF models and AUCs

Each RF implementation was computed with the ntree parameter
for a total of times based on (Equation 3); where S is the number
of signatures selected based on Equation (2), is the number of
random partitions used, and q is the number of models generated
per partition.

RF, =Sk. q (3)

For the current study, each RF implementation was sent to
an individual computational node for model training and valida-
tion, with k =50 and q =25. Each node was, therefore, handling
computations, which resulted in models and AUCs. Metrics for
each model validation were also computed with the R-package
MLmetrics [28]. The time was measured before and after each
modelization. To get the average AUC of an implementation, the
AUC was averaged across runs. Similarly, the time to process the
model was averaged across runs to get the average runtime of the
implementation.

To measure the runtime, we selected computational nodes
having the same characteristics. We used the nodes from the
CECTI's Dragonl cluster hosted by the UMons University Belgium,
which provided 416 CPUs distributed on 26 nodes and 128GB of
RAM. The CPUs used were SandyBridge processors of 2.60GHz.

¢ Step 4: Hyper-stability

For a given RF implementation and resampling—signature com-
bination (totaling ¢ = S.k combinations), ¢ =25 AUCs were gener-
ated. The coefficient of variation (CV) of this set of AUC values
was computed. This CV measures the average variability of AUCs
around the mean AUC, defined by Equation (4), where sd repre-
sents the AUC standard deviation and X is the AUC mean. It ranges
between 0 and 1.

cv="5d /x @)

Equation (4) was calculated for each resampling-signature
combination tested. At this point, a total of ¢ CV values were
generated. Stability scores were calculated using all CV < t values
only, where t represents the stability threshold. For this study,
since we want to assess the hyper-stability of the RF methods,
we set t = 0. Thus, stability scores were computed based only on
CV == 0 values. Two novel hyper-stability scores were created: a
resampling-dependent (HRS) score and a signature-dependent
(HSS) score. For HRS, the count of signatures with CV == 0
(named Sp) was averaged across the total number of signatures
(named S) tested for a given resampling k, and was termed HR,
as displayed by Equation (5). The mean of the set of nonzero HR
values obtained across all the k resamplings selected (in this study,
k = 50) was then used to create the HRS score, which describes
the hyper-stability of the RF implementation on a resampling
coordinate. The HSS score, in turn, averages the number of
resamplings with CV == 0 (denoted k¢) across the total number of
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resampling k tested for a given signature S, and is referred to as
HS, as displayed by Equation (6). The mean of the set of non-zero
HS values obtained across all the S signatures tested (the total
number of signatures S tested varies from one dataset to another)
was then used to create the HSS score, which describes the hyper-
stability of the RF implementation on a signature coordinate.

HR, = /g (5)

HS;, =/, ©

We used R version 3.3.1 for all the analyses detailed in the
current study. Table 1 listed all RF implementation R-packages
and their versions used in the current study.

Results
Hyper-reproducibility of the AUCs

To highlight the best RF strategy, the AUCs generated have to be
with a high degree of precision. In this context, we used the CV to
assess the AUC’s dispersion measured over 25 models generated
for each signature-resampling combination. Each RF implemen-
tation was tested on a set of signature-resampling combinations
selected from each of the three datasets considered in this study.
We used a dot-matrix plot to visually inspect the reproducibility
of AUCs for each RF implementation. A dot on the matrix means
that the 25 models generated from the corresponding signature—
resampling combination lead exactly to the same AUC value.
In Fig. 2, a dot matrix displays all the LUSC dataset for CV ==
0, obtained for all combined signature-resampling of each RF
implementation.

Based on that, we classified the RF implementations into three
groups based on the lack of reproducibility. (i) The signature
dependent group (Type A) contained only PPForest, which
displayed multiple blank rows; (ii) The resampling dependent
group (Type B) encompassed CCF, Rerf, randomForest, iForest,
and ranget, which presented numerous empty columns; and (iii)
the signature-resampling group (Type C) was composed of the
remaining implementations where no trend neither in signature
nor in resampling could be found. Aside from our classification,
RRF showed only a few stable signature-resampling combinations
and was therefore unclassified. RF implementations switched
between groups depending on the dataset under study (Fig.3A for
the BRCA dataset and Fig. 3B for the THCA dataset).

Hyper-stability scores

We computed the hyper-stability scores for resampling (HRS)
and signature (HSS) to further compare the RF implementations
according to (Equations (5) and (6)) (see Materials and Methods).
The dot matrices (Figs 2 and 3) were used to calculate HRS and
HSS for the three datasets. For illustration, Fig. 4A displayed an
example on how to calculate HRS and HSS from the dot matrix. A
bar chart to display these HRS (green bars) and HSS (orange bars)
for the LUSCis given in (Fig. 4B). The Type A group PPforest method
shows a combined score below 0.4. The Type B implementations
show almost similar values of HRS and HSS with a combined value
>0.65. Furthermore, among the Type C group, only obliqueRF,
RFSRC, and WSRF obtained a combined score around 0.9, while
the remaining implementations obtained a score below 0.8. We
observed similar trends for the BRCA dataset (Fig. SA). However,
the THCA dataset displayed HRS and HSS scores below 0.4 for all

Assessing Random Forest self-reproducibility | 5

implementations (Fig. 5B). More specifically, for the LUSC dataset,
good scores (]0.8, 1]) were obtained for obliqueRF, RFSRC, and
WSRF; moderate scores ([0.4, 0.8]) for rotationForest, CCF, cForest,
extraTrees, iForest, randomForest, RUF, Rborist, ranger, Rerf, and
rotationForest; and poor scores ([0, 0.4[), for RRF and PPforest.
Interestingly, the poorly performing group implementations per-
sisted across datasets (LUSC, BRCA, and THCA). The good and
moderate RF implementations were inconsistent across datasets
(Fig. SA for BRCA and Fig. 5B for THCA). These results underlined
the dataset dependency of the RF implementations studied here.

Average AUC and training time

We calculated the average AUC obtained from models. We also
calculated the average time to train a model. The (Fig. 4B) dis-
played this average AUC (blue line) and time (red line) obtained
by each RF implementation for the LUSC dataset. Except for
PPforest and RRF, the average AUC was equal to 1 for all the
RF implementations. With an average time of 23.3 s to process
a model, rotationForest was the lowest method. RF implemen-
tations CCF, cForest, obliqueRF, PPForest, and RUF processed the
models with an average time between 1 and 4.1 s. The remaining
RF implementations processed the models with an average time
below 0.2 s. Similar trends were observed for both BRCA and THCA
datasets but with a higher modelization time (Fig. SA and B). For
the THCA dataset, CCF achieved an average AUC value <1 in
addition to PPforest and RRF.

Identification of potential causes of
hyper-stability score impairment
Algorithm taxonomic classification of RF implementations

We assessed whether the hyper-stability scores varied according
to the RF implementation taxonomy previously described by Pre-
torius et al. [29]. Based on the 15 RF implementations, the following
four criteria could be derived from this taxonomy: the number
of layers of randomization modification; transformation or pro-
jection of the dataset; nonexhaustive search, and deterministic
modifications.

Taking the randomForest original implementation as a refer-
ence, we assessed these four criteria’s impact on the HRS and
HSS scores. Adding or removing layers of randomization did not
improve the scores. Similarly, nonexhaustive search methods did
not drastically change the scores. Indeed, extraTrees or RUF did
not show the highest HRS and HSS scores. Besides, data trans-
formation or projection might have an impact on the scores. We
observed a decrease in the HRS and the HSS scores for rotation-
Forest, PPforest, and CCF, as well as an increase in these scores
for Rerf for the BRCA dataset or obliqueRF for the LUSC dataset.
The deterministic modification might also impact the scores,
especially for RRF, PPforest, cForest, Rerf, and WSRF. Nevertheless,
no impact of this deterministic modification could be detected
with the scores obtained by RUF, ramdomForest, RESRC, Rborist,
and obliqueRF. Importantly, no common impact could be linked
to the Pretorius et al. taxonomy to the HRS and HSS scores.

Dataset dimension and random sampling

To assess whether the dataset’s size may impair the hyper-
stability scores, we further explored the variable-sample ratio
(number of variables/number of samples) in the datasets. With
a resampling rate of 0.5, a total of 0.5 * 96=48 samples were
randomly selected in each LUSC resampling, leading to a variable—

sample ratio = 9/48 = 0.19. By increasing the data resampling
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Figure 2. Dot matrix of AUCs’ coefficient of variation is equal to O for all RF implementations. Coefficient of variation equal to 0 for q =25 AUCs

obtained for each signature-resampling combination per RF implementation for the LUSC dataset. Each dot corresponds to 25 equal AUCs (CV ==

a signature-resampling combination.

rate to 0.9 (hence, decreasing the data perturbation), the variable—
sample ratio decreased to 0.10, which resulted in higher HRS and
HSS scores for all implementations (data not shown). Despite the
same number of samples in the THCA dataset, this ratio reached
0.77 for a resampling rate of 0.5, leading to HRS and HSS scores
around 0.4 for all the implementations. Again, the scores could
be increased over 0.8 by switching to a variable-sample ratio of
0.44 at a resampling rate of 0.9. Besides, with 28 variables and
182 samples, the BRCA variable-sample ratio reached 0.3 for a
resampling rate of 0.5. Consequently, HRS and HSS scores were
likely to depend on the variable-sample ratio, where good scores
(>0.8) were obtained with a low variable-sample ratio (<0.5).

To evaluate whether the random resampling could impair
an RF implementation’s hyper-stability, we quantified the

) for

resampling with few CV == 0. Using the dot matrix based on LUSC
(Fig. 2), we observed that resampling 37 and 38 were struggling
to stabilize the AUC for most RF implementations. Such a lack of
stability on the LUSC dataset was particularly significant for the
CCF, PPforest, Rerf, rotationForest, and RRF implementations. We
made similar observations for BRCA’s resampling 6 and 34 and
THCA’s resampling 6 to 10. Consequently, the presence of these
problematic resamplings might contribute to the decrease of the
hyper-stability scores.

Data connectivity

To better understand the HRS and HSS variability between the
datasets, we looked into gene connectivity. Differences in connec-
tivity might explain the performance of machine learning models.
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Figure 3. Dot matrix of AUCs with a coefficient of variation equal to O for all RF implementations tested. Coefficient of variation equal to 0 for g =25
AUCs obtained for each signature-resampling combination per RF implementation for the (A) BRCA dataset and (B) THCA dataset. Each dot corresponds

to 25 equal AUC values (CV == 0) for a signature-resampling combination.

Using Weighted Gene Co-expression Network Analysis (WGCNA)
[30] module preservation analysis on the 7031 genes in common
between the tumor samples of the three filtered datasets, we
seek for modules with highly correlated genes conserved between
the three datasets. Thus, we compared BRCA > > LUSC, BRCA
>>THCA, and LUSC > >THCA (Fig. S1 in the supplementary
data File S1). We found that 15 modules among 25 showed low
preservation for BRCA > >LUSC. When performing a module
preservation analysis, genes with a similar function tend to clus-
ter together according to a phenotype or a disease [31]. These
modules were located between no preservation (blue line, Zsum-
mary =2) and very weak preservation (green line Zsummary = 10)
region. These modules also had the lowest median rank statistic,
meaning their observed preservation statistics tend to be the
lowest among the other modules. Moreover, 14 highly connected
genes within the grey60 module of BRCA lost their connectivity
within the LUSC network (Fig. S2 in the supplementary data File
S1). Similarly, for the BRCA > > THCA case, we observed that 15
modules among 25 were lowly preserved in the THCA samples,
and 20 modules out of 24 showed weak preservation for the
LUSC > > THCA case. These results underlined that the functional
connectivity was not conserved between the three datasets and
further contributed to explaining differences in HRS/HSS scores.

Discussion

In this study, we tested the stability of 15 different RF implemen-
tations over three distinct cancer datasets. These datasets were
perfectly balanced and composed of paired tumor-healthy sam-
ples. We compared RF implementations for AUC hyper-stability
scores and runtime, and investigated drivers of (in)-stability.

We assessed RF’s hyper-stability-based AUC-derived HRS and
HSS scores for 15 RF implementations. The AUC has become a
common measure to determine the accuracy of classification
models. Nevertheless, it only evaluates how much the classifica-
tion model can discriminate between the classes. The AUC could,
therefore, be misleading and might suffer from the following

drawbacks [32]: (i) AUC ignores the probability values of the
samples; (i) it includes less interesting regions on the ROC plot;
(iii) it does not reflect the intended use of the model; and (iv)
it does not provide information about the spatial distribution of
model errors. Besides, the AUC might be insensitive to strongly
associated disease features added to the model [33]. Moreover,
AUC displays a high dispersion, especially for imbalanced or small
sample sets [34]. AUC alternatives can provide useful measures of
performance for prognostic models [34]. Examples are the Pietra
index and the standardized Brier or scaled Brier scores. These
alternatives should be considered for future calculation of the
hyper-stability scores.

In this work, we built on AUC for different scenarios of resam-
pling and signature combinations to derive hyper-stability scores
HRS and HSS. The proposed methodology tried to assess RF inher-
ent randomness while keeping the external randomness under
control. While we measured the exact same AUC from 25 models,
our system was not deterministic, as defined by Padhye et al. [35].
Indeed, rule extraction showed that the genes, the thresholds,
and the number of steps used could differ in each RF model
(Tables S3 and S4 in the supplementary data File S1). Conse-
quently, our system kept the intrinsic randomness of the RF
implementations and could not be considered deterministic.

Good HRS and HSS scores were obtained in our study, except
for the THCA dataset at a resampling rate of 0.5. With a perfect
balance between tumor and healthy samples, the small sample
size might explain THCA’s low performance. Nevertheless, the
LUSC dataset displayed good hyper-stability scores with the same
number of samples. Specific characteristics of the RF algorithm
and the nature of the application data are the main drivers of
model performance (Fig. 54 in the supplementary data File S1),
which we discuss next.

Algorithm characteristics

RF algorithms may differ from Breiman’s original implementation
in their randomization and deterministic components. Except for
the tree selection and the ensemble compilation, the 15 chosen
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Figure 4. Random Forest hyper-stability scores. (A) Example of calculating
the HR [Equation (5)], the HS [Equation (6)], HRS, and HSS. (B) HRS
score and HSS score were displayed as bars in the plot for each RF
implementation for the LUSC dataset, using the left scale of the graph.
Average AUC of each RF implementation was reported with a blue line
using the left scale of the graph. Average time to process a model was
reported with a red line using the right scale of the graph.

RF implementations covered all the taxonomy criteria listed by
[36]. The following characteristics could therefore impact AUC
and therefore the hyper-stability performances:

(1) The number of trees; A model with more trees is better [37].
Our results were based on 500 trees for each RF implementa-
tion. Indeed, except for RREF, the resulting OOBerr stabilized
for most RF implementations after 500 trees (Fig. S3C in the
supplementary data File S1). RRF struggled to stabilize the
OOBerr after 500 trees, which might explain its poor hyper-
stability over all the datasets.

(2) The sources of randomization encompass selecting samples,
sampling the features, and selecting the splitting point [36].
The randomization component deals with the insertion or
deletion of randomization layers and the modification of the
random sampling procedure.

(3) The deterministic modifications, which encompass oblique
or orthogonal splits, impurity measure, and penalization [36].
The deterministic component deals with the tree construc-
tion, data transformation, type or rules to split, impurity
measure, or variable penalties.

No relationships were found between the hyper-stability
scores, the sources of randomization, and the deterministic
modifications. However, good, moderate, and poor groups could
be derived from the hyper-stability scores. Interestingly, only the
poor group contained dataset-independent RF implementations,
RRF, and PPForest.
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Figure 5. Random Forest hyper-stability scores HRS and HSS for the (A)
BRCA dataset and (B) THCA dataset.

For the purpose of the current study, we used an RF-based
FS coupled with the Kuncheva and Spearman indices to check
the overlap and the correlation of the variable ranking. The aim
was to get the minimal set of important and stable variables
to improve the reliability of the selection before performing the
comparison. The FS used did not favor any RF implementation
method; it may negatively impact the poor group. However, FS
methods that promote predictivity, sparsity, and reliability are
recommended and should be considered in future development
such as Stabl, recently proposed in [38]. For the poor group, RRF
uses regularized selected variables during FS. Further work is
thus needed to study how such regularization may affect the FS
used here. This work might be done for RRF and PPforest using
the Linear Discriminant Analysis (LDA)-based projection pursuit
index to identify projections that separate classes [39].

Conversely, the good and the moderate groups contained non-
fixed RF implementations regarding the dataset studied. Indeed,
each RF implementation resulted in different HRS and HSS scores
when facing another dataset and thus might be classified as good
or moderate.

Dataset characteristics

Although the RF versatility between Good and Moderate groups
could not be ignored, it might be linked to the training set. Indeed,
the selected samples and variables should provide enough infor-
mation to the model to fully recognize the patterns. A low vari-
able-sample ratio could be critical to produce models with a high
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average AUC [40] and good hyper-stability. The following dataset
characteristics could, therefore, impact the AUC and therefore,
the hyper-stability performances:

(1) The balance between the categories: While the three
datasets used in the current study were perfectly balanced
between the tumor and the healthy classes, extremely
imbalanced classes could harm RF behaviors [41]. To apply
our methodology to nonbalanced datasets, we recommend
the use of balanced or weighted RF implementations. Chen
et al. proposed balanced and weighted RF, where balanced
RF will force to deal with equally sized classes, and the
weighted RF was based on cost-sensitive learning. For such
skewed datasets, the precision-recall curve (PR curve) and
the weighted AUC should be preferred over the ROC curve
and the AUC [42, 43].

(2) The size of the training set: The number and the heterogene-
ity of the samples could be an essential source of instability
during the biomarker selection, leading the training set to
be more or less attractive for the RF [44, 45]. Subsequently,
thousands of samples were recommended to reach good
Kuncheva and Spearman scores [40]. However, our results
achieved acceptable scores with the FS and only 192, 96, and
98 samples, meaning that a good a priori on the samples
could circumvent this issue. Nevertheless, few resamplings
displayed a low number of CV == 0 across RF implemen-
tations but impacted them similarly. A good a priori on the
sample classes could, therefore, lead to heterogeneous ran-
dom resamplings. Thus, such heterogeneity could impact
the FS and the hyper-stability scores [26]. Interestingly, the
variable-sample ratio appeared to be more related to the
variability observed for the hyper-stability scores. By keeping
the variable-sample ratio below 0.5, we obtained good hyper-
stability scores (>0.8) for the implementations. For exam-
ple, we observed that the AUC reproducibility decreased
along with the signature size for the THCA dataset, which
was the only dataset that displayed a high variable-sample
ratio and an average of low hyper-stability scores. Also, the
length of a signature might impact the mtry RF parame-
ter and might impair their hyper-stability [46]. However, by
increasing the resampling rate (hence, decreasing the data
perturbation) of the training step to 0.9, the RF implemen-
tations reached good hyper-stability scores while keeping
the variable-sample ratio below 0.5. Therefore, reducing the
or the data perturbation for the THCA dataset could keep
the variable-sample ratio below 0.5, leading to higher hyper-
stability scores. Remarkably, we repeated all the modeliza-
tions on three different sets of increasing signature sizes for
each dataset, and the same hyper-stability scores (average
SD=0.01) were obtained each time for each RF implementa-
tion. Subsequently, the HSS and HRS scores were more tied to
the models and their over-fitting when the variable-sample
ratio was kept under 0.5.

(3) The feature connectivity: By grouping the genes into mod-
ules of highly co-expressed genes, we could assess the FS
bias occurring when highly connected genes are selected.
Our results demonstrated the difference between the three
datasets in the gene-gene connectivity across the tumor
samples, meaning that the functional information was dif-
ferent between the datasets. While 56% of the modules
displayed a low to no preservation from BRCA to LUSC (14/25)
or from BRCA to THCA (14/25), 83% of the modules dis-
played a weak to no preservation from LUSC to THCA (20/24).
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Such a difference might explain the variation also observed
in AUC hyper-stability between the datasets. Nevertheless,
more work is needed to find a causative link between such
connectivity and either the AUC hyper-stability or the data
perturbation by performing module preservation between
the training partitions selected.

(4) The correlations between variables within signatures:
Datasets with many correlated variables may create
misleading feature rankings [47]. Very few strong correla-
tions were found within BRCA signatures (Table 2), while
this dataset displayed excellent hyper-stability scores.
Subsequently, the correlations between variables within the
signatures could not explain the lower hyper-stability scores
observed for both the LUSC and the THCA datasets.

(5) The variability of the dataset: With high entropy, datasets
tend to be more sensitive to perturbation, which results
in different AUC performance. This is often the case with
small datasets like biological data. In this study, the FS used
allowed us to maximize the class separability and sepa-
rate the samples according to the tumor or healthy groups.
However, while a perfect separation was observed for the
BRCA and LUSC datasets, it was close to perfect for the
THCA dataset. Indeed, all but four THCA samples were linked
to their respective class. These few crossing-class samples
might explain both the high number of THCA variables after
the FS and the low AUC hyper-stabilities. Further work is
therefore needed to assess if the class separability could
impair the AUC hyper-stability.

In addition to the dataset and algorithm characteristics, the
stability threshold selected can significantly influence stability
performance, which we will discuss in the next section.

Hyper-stability and stability threshold

All hyper-stability measurements were based on CV==0 values,
indicating that no variability in the AUC values obtained was tol-
erated. This strictness was essential as the three chosen datasets
proved to be optimal. The RF methods effectively differentiated
between healthy samples and tumors. As a result, nearly per-
fect AUC values were reached across several iterations of each
RF implementation with various resampling-signature combina-
tions. In this section, we illustrated how to generalize stability
scores to different contexts and alternatively defined relative
stability. As outlined in the Materials and Methods section, the
stability threshold t, which controls the dispersion of AUCs, can
be assigned a value (0 < t < 1). In such situations, the AUC
values obtained were not necessarily identical. Consequently, the
dispersion around the mean AUC became >0 (instead of t = 0
selected for the hyper-stability), and we referred to this as relative
stability. HRS and HSS scores are redefined as RRS (Relative-
stability Resampling Sensitive) and RSS (Relative-stability Signa-
ture Sensitive), respectively. This indicated that hyper-stability
represented a particular case of relative stability when t equals
0. The values of hyper-stability scores HRS and HSS, along with
the relative stability scores RRS and RSS, are shown in Fig. S6
of the supplementary data File S1 for the THCA dataset (with a
resampling rate P =.3). For t = 0 (i.e. CV==0), the dot matrices
generated were either sparse or nearly empty for most RF imple-
mentations (Fig. S6.A in the supplementary data File S1). As a
result, the HRS/HSS scores were consequently low (Fig. S6.B in
the supplementary data File S1). Setting the stability threshold
t=0.002 (i.e. CV < 0.002) produced denser dot matrices (Fig. S6.C in
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the supplementary data File S1) and led to higher stability scores
(Fig. 6.D in the supplementary data File S1).

Additionally, we aimed to illustrate an instance where stability
scores were derived from AUC values that are not close to perfect
(i.e. <1). To achieve this, the pipeline was utilized on the dataset
referenced in [6], which was used to develop a circulating miRNA-
based screening signature for breast cancer. The dataset (referred
here as miRNA-BRCA) included normalized expression values for
188 miRNAs from 282 healthy tumor samples, which consisted
of 149 patients with treatment-naive primary breast cancer and
133 age-matched cancer-free women. The authors have designed
128 screening signatures to perform optimally on an independent
dataset. From this collection, we selected S= 30 signatures of
different lengths (from 4 to 23). Additionally, we used the following
parameters to execute the pipeline: k =30 (indicating the number
of random partitions with P =.5), q=25 models, and ntree =500.
The relative stability scores RRS and RSS were then calculated
using two thresholds t= 0.004 and t= 0.008, and the results were
displayed in Fig. S7 in the supplementary data File S1; results
were shown for only 12 RF methods. As expected, the average AUC
performance of the evaluated methods ranged between 0.70 and
0.80, with cForest attaining the highest mean AUC and PPforest
the lowest (Fig. S7.B and S7.D in the supplementary data File
S1). Regarding the stability of the RF methods, the dot matrices
for a threshold of t =0.004 were nearly full for cForest and rota-
tionForest, while it was nearly empty for PPforest and about half
full for the other methods (Fig. S7.A in the supplementary data
File S1). This was reflected in the stability scores obtained. The
method cForest achieved highest stability scores RRS=RSS=0.81,
followed by rotationForest RRS=RSS=0.68. The other methods
yielded stability scores below 0.35, with a lowest score for PPforest
RRS=RSS=0.03 (Fig. S7.B in the supplementary data File S1).
Switching to a threshold of t =0.008 resulted in significantly
more populated dot matrices for most RF methods (Fig. S7.C
in the supplementary data File S1), thereby improving stability
scores of the RF methods (Fig. S7.D in the supplementary data
File S1). These results indicated that stability scores were highly
influenced by the selected threshold t, rather than the mean
AUC performance of the methods. Furthermore, the RF methods
switched among groups A, B, and C across different datasets and
depended on the stability threshold t selected within the same
dataset.

According to the current study, the HR score intuitively depends
on the robustness of the tested signature. This allows us to assess
the reproducibility of AUC performance across various resam-
plings. In contrast, the HS score may pertain to the signature
multiplicity mentioned in [48], which enables evaluation of the
performance of several alternative signatures within a single
resampling partition.

Conclusion

In the current study, we demonstrated the importance of
measuring RF AUC hyper-stability in the context of short BSD.
We reinforced the message that no RF implementation should
be used blindly for classification and on any datasets. Instead,
each should be tested for its AUC performance and AUC-
derived hyper-stability before the analysis. While the AUC-derived
hyper-stability could reveal the dataset dependency of an RF
implementation, it could also identify the origin of such reliance,
telling whether an RF implementation is signature or resampling
dependent. Therefore, the hyper-stability scores measured a
trustable difference that should be taken into account while

comparing the RF implementations. Moreover, the modelization
time could further help discriminate RF implementations with
equal hyper-stabilities. Consequently, the AUC hyper-stability
and the modelization time reinforce the average AUC message
and guide the researchers towards the best RF strategy for short
biomarker signature discovery or other fields.

Key Points

e We introduced a new metric, the AUC hyper-stability,
to be used in complementary with the average AUC to
better measure the performance of a Machine Learning
(ML) model in the context of short biomarker signature
discovery.

e For illustration, we conducted a performance compari-
son of 15 RF implementations applied to three datasets
from TCGA database. The performance metrics included
AUC, AUC hyper-stability, and runtime.

e The AUC hyper-stability metricis able to discriminate RF
implementations that show similar AUC performances.

e This new metric can therefore help researchers in the
choice of the best ML method to get stable short pre-
dictive signatures. The choice can be done by taking
a tradeoff between the average AUC performance, the
hyper-stability scores, and the modeling time.
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Data availability

The pipeline used in the current study is made of two compo-
nents; each one was implemented and versioned separately and
then having its own package. The first component concerns the
feature selection and was implemented via the R package stabFs,
and can be found in the Gitlab repository at https://gitlab.com/
a.debit/stabfs, and available in the Figshare platform at https://
doi.org/10.6084/m9.figshare.24878646.v1. The second component
deals with the comparison and was implemented in the R package
called compareRf. CompareRf is publicly accessible at https://
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The TCGA datasets used in this research can be downloaded
from https://www.cancer.gov/tcga. By providing open access
to the data and source code, we aim to ensure transparency,
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reproducibility, and ease of collaboration within the research
community.
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